Integrating Hyperautomation, Generative Artificial Intelligence, and Intelligent Infrastructure for Smart Cities: A Unified Socio-Technical Framework
- Authors
-
-
Dr. Lukas Meyer
Faculty of Engineering and Information Technology, University of Melbourne, AustraliaAuthor
-
- Keywords:
- Hyperautomation, Smart Cities, Generative Artificial Intelligence, Process Mining
- Abstract
-
The rapid evolution of smart cities has been driven by the convergence of digital technologies, intelligent infrastructure, and data-driven governance models. However, despite significant advancements in artificial intelligence, automation, and urban analytics, contemporary smart city ecosystems remain fragmented, operationally inefficient, and constrained by siloed decision-making processes. This research addresses these limitations by developing and theoretically validating an integrated framework that combines hyperautomation, generative artificial intelligence, process mining, edge intelligence, and smart infrastructure management to enable adaptive, resilient, and human-centric smart cities. Drawing strictly from the provided scholarly and industry references, the study synthesizes insights from hyperautomation literature, artificial intelligence adoption in urban contexts, smart city security and governance research, and edge–cloud architectural models for energy and infrastructure optimization. The methodology adopts a qualitative, theory-driven research design grounded in extensive conceptual analysis, cross-domain integration, and interpretive synthesis of prior empirical findings. Results indicate that hyperautomation, when augmented with generative artificial intelligence and process mining, enables continuous optimization of urban workflows, enhances transparency in governance, and supports real-time adaptive decision-making across energy, mobility, public services, and financial systems. Furthermore, the integration of edge intelligence and tiny machine learning architectures addresses latency, privacy, and scalability challenges inherent in large-scale urban environments. The discussion elaborates on the socio-technical implications of this integration, emphasizing trust, security, ethical governance, and citizen participation as critical success factors. Limitations related to data heterogeneity, institutional readiness, and regulatory fragmentation are critically examined, alongside future research directions focusing on autonomous governance models and participatory AI systems. The study concludes that a unified hyperautomation-driven smart city framework represents a transformative paradigm capable of aligning technological innovation with sustainable urban development and societal well-being.
- Downloads
-
Download data is not yet available.
- References
-
Celonis. (2020). Process mining for hyperautomation success.
Deloitte. (2020). The robots are ready: Are you? Unlocking the value of RPA.
Hayajneh, A. M., Aldalahmeh, S. A., Alasali, F., Al-Obiedollah, H., Zaidi, S. A., & McLernon, D. (2024). Tiny machine learning on the edge: A framework for transfer learning empowered unmanned aerial vehicle assisted smart farming. IET Smart Cities, 6, 10–26.
Herath, H., & Mittal, M. (2022). Adoption of artificial intelligence in smart cities: A comprehensive review. International Journal of Information Management Data Insights, 2, 100076.
IBM Institute for Business Value. (2021). From automation to hyperautomation: The next evolution.
Ismagilova, E., Hughes, L., Rana, N. P., & Dwivedi, Y. K. (2022). Security, privacy and risks within smart cities: Literature review and development of a smart city interaction framework. Information Systems Frontiers, 24, 1–22.
Krishnan, G., & Bhat, A. K. (2025). Empower financial workflows: Hyper automation framework utilizing generative artificial intelligence and process mining. SSRN.
La Trobe University. (2024). La Trobe University—Facts and figures.
Mills, N., Rathnayaka, P., Moraliyage, H., De Silva, D., & Jennings, A. (2022). Cloud edge architecture leveraging artificial intelligence and analytics for microgrid energy optimisation and net zero carbon emissions.
Moraliyage, H., Mills, N., Rathnayake, P., De Silva, D., & Jennings, A. (2022). Unicon: An open dataset of electricity, gas and water consumption in a large multi-campus university setting.
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., & Ray, A. (2022). Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35, 27730–27744.
Pega. (2021). The future of work: Intelligent automation and hyperautomation.
Sy, A., & Burkett, D. (2022). Democratizing automation: Low-code RPA and citizen developers. Information Systems Management, 39(2), 144–153.
Ullah, Z., Al-Turjman, F., Mostarda, L., & Gagliardi, R. (2020). Applications of artificial intelligence and machine learning in smart cities. Computer Communications, 154, 313–323.
van der Aalst, W. (2019). Aligning task mining and process mining: Toward an integrated framework.
Westraadt, L., & Calitz, A. (2020). A modelling framework for integrated smart city planning and management. Sustainable Cities and Society, 63, 102444.
- Downloads
- Published
- 2026-01-05
- Section
- Articles
- License
-
Copyright (c) 2026 Dr. Lukas Meyer (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Similar Articles
- Dr. Amelia Torres, Transforming Merger and Acquisition Practice through Artificial Intelligence: A Theoretical and Applied Framework for AI-Enabled Due Diligence and Decision-Making , Emerging Indexing of Global Multidisciplinary Journal: Vol. 4 No. 11 (2025): Volume 4 Issue 11 2025
- Dr. Lukas Reinhardt, Integrating Industrial Internet of Things, Digital Transformation, and Process Optimization for Industry 4.0 and Net-Zero Transitions: A Socio-Technical and Organizational Perspective , Emerging Indexing of Global Multidisciplinary Journal: Vol. 4 No. 9 (2025): Volume 4 Issue 9 2025
- Dr. Lukas Heinrich, Integrative Traffic Intelligence for Dynamic Vehicle Rerouting and Driver Monitoring: A Multilayered Systems Perspective on Congestion Mitigation and Adaptive Urban Mobility , Emerging Indexing of Global Multidisciplinary Journal: Vol. 4 No. 5 (2025): Volume 04 Issue 5
- Prof. Dr. Stefan Lessmann, Hyper-Personalization, Analytics, and Artificial Intelligence in FinTech Ecosystems: Theoretical Foundations, Methodological Evolutions, and Socio-Technical Implications , Emerging Indexing of Global Multidisciplinary Journal: Vol. 4 No. 12 (2025): Volume 04 Issue 12
- Ravi K. Menon, Blockchain-Enabled Cybersecurity and AI-Augmented Governance for Trusted Industrial IoT, Healthcare, and Supply Chain Systems , Emerging Indexing of Global Multidisciplinary Journal: Vol. 4 No. 10 (2025): Volume 04 Issue 10
- Dr. Lukas M. Verhoeven, Integrating Artificial Intelligence and Advanced Data Processing for Real-Time Credit Scoring: Theoretical Foundations, Methodological Innovations, and Implications for Contemporary Credit Risk Management , Emerging Indexing of Global Multidisciplinary Journal: Vol. 4 No. 10 (2025): Volume 04 Issue 10
- Dr. Gennarik L. Mortenkov, Synergizing Business Intelligence and Artificial Intelligence for Competitive Advantage: A Multi-Dimensional Analysis of Organizational Resilience and Decision-Making Frameworks , Emerging Indexing of Global Multidisciplinary Journal: Vol. 4 No. 9 (2025): Volume 4 Issue 9 2025
- Dr. Alejandro M. Torres, Artificial Intelligence–Enabled Financial Anomaly Detection and Reconciliation: Governance, Risk, and Explainability in Modern Accounting Ecosystems , Emerging Indexing of Global Multidisciplinary Journal: Vol. 4 No. 8 (2025): Volume 04 Issue 08
- Dr. Arjun Mehta, Artificial Intelligence–Driven Hierarchical Supply Chain Planning: Toward a Unified Framework for Visibility, Demand Forecasting, and Sustainable Optimization , Emerging Indexing of Global Multidisciplinary Journal: Vol. 4 No. 5 (2025): Volume 04 Issue 5
- Dr. Elias Thorne, Dr. Sarah Vance, Unsupervised Feature Alignment: Ethical and Explainable Contrastive Approaches in Multimodal Artificial Intelligence Systems , Emerging Indexing of Global Multidisciplinary Journal: Vol. 4 No. 9 (2025): Volume 4 Issue 9 2025
You may also start an advanced similarity search for this article.
